from keras.src import backend from keras.src import ops from keras.src.api_export import keras_export from keras.src.optimizers import optimizer @keras_export(["keras.optimizers.Nadam"]) class Nadam(optimizer.Optimizer): """Optimizer that implements the Nadam algorithm. Much like Adam is essentially RMSprop with momentum, Nadam is Adam with Nesterov momentum. Args: learning_rate: A float, a `keras.optimizers.schedules.LearningRateSchedule` instance, or a callable that takes no arguments and returns the actual value to use. The learning rate. Defaults to `0.001`. beta_1: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 1st moment estimates. Defaults to `0.9`. beta_2: A float value or a constant float tensor, or a callable that takes no arguments and returns the actual value to use. The exponential decay rate for the 2nd moment estimates. Defaults to `0.999`. epsilon: A small constant for numerical stability. This epsilon is "epsilon hat" in the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in Algorithm 1 of the paper. Defaults to `1e-7`. {{base_optimizer_keyword_args}} Reference: - [Dozat, 2015](http://cs229.stanford.edu/proj2015/054_report.pdf). """ def __init__( self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, weight_decay=None, clipnorm=None, clipvalue=None, global_clipnorm=None, use_ema=False, ema_momentum=0.99, ema_overwrite_frequency=None, loss_scale_factor=None, gradient_accumulation_steps=None, name="nadam", **kwargs, ): super().__init__( learning_rate=learning_rate, name=name, weight_decay=weight_decay, clipnorm=clipnorm, clipvalue=clipvalue, global_clipnorm=global_clipnorm, use_ema=use_ema, ema_momentum=ema_momentum, ema_overwrite_frequency=ema_overwrite_frequency, loss_scale_factor=loss_scale_factor, gradient_accumulation_steps=gradient_accumulation_steps, **kwargs, ) self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon def build(self, var_list): """Initialize optimizer variables. Nadam optimizer has 2 types of variables: momentums and velocities. Args: var_list: list of model variables to build Nadam variables on. """ if self.built: return if var_list: dtype = var_list[0].dtype else: dtype = backend.floatx() super().build(var_list) self._momentums, self._velocities = self.add_optimizer_variables( var_list, ["momentum", "velocity"] ) self._u_product = backend.Variable(1.0, dtype=dtype) def _backend_update_step(self, grads, trainable_variables, learning_rate): dtype = self._u_product.dtype self.assign( self._u_product, self._u_product * self.beta_1 * ( 1.0 - 0.5 * ops.power(0.96, ops.cast(self.iterations + 1, dtype)) ), ) super()._backend_update_step(grads, trainable_variables, learning_rate) def update_step(self, gradient, variable, learning_rate): """Update step given gradient and the associated model variable.""" var_dtype = variable.dtype lr = ops.cast(learning_rate, var_dtype) gradient = ops.cast(gradient, var_dtype) local_step = ops.cast(self.iterations + 1, var_dtype) next_step = ops.cast(self.iterations + 2, var_dtype) decay = ops.cast(0.96, var_dtype) beta_1 = ops.cast(self.beta_1, var_dtype) beta_2 = ops.cast(self.beta_2, var_dtype) u_t = beta_1 * (1.0 - 0.5 * (ops.power(decay, local_step))) u_t_1 = beta_1 * (1.0 - 0.5 * (ops.power(decay, next_step))) u_product_t = ops.cast(self._u_product, var_dtype) u_product_t_1 = u_product_t * u_t_1 beta_2_power = ops.power(beta_2, local_step) m = self._momentums[self._get_variable_index(variable)] v = self._velocities[self._get_variable_index(variable)] self.assign_add( m, ops.multiply(ops.subtract(gradient, m), (1 - beta_1)) ) self.assign_add( v, ops.multiply(ops.subtract(ops.square(gradient), v), (1 - beta_2)) ) m_hat = ops.add( ops.divide(ops.multiply(u_t_1, m), 1 - u_product_t_1), ops.divide(ops.multiply(1 - u_t, gradient), 1 - u_product_t), ) v_hat = ops.divide(v, (1 - beta_2_power)) self.assign_sub( variable, ops.divide( ops.multiply(m_hat, lr), ops.add(ops.sqrt(v_hat), self.epsilon) ), ) def get_config(self): config = super().get_config() config.update( { "beta_1": self.beta_1, "beta_2": self.beta_2, "epsilon": self.epsilon, } ) return config Nadam.__doc__ = Nadam.__doc__.replace( "{{base_optimizer_keyword_args}}", optimizer.base_optimizer_keyword_args )